Abstract: Deep reinforcement learning is a promising approach to learning policies in unstructured environments. Due to its sample inefficiency, though, deep RL applications have primarily focused on simulated environments. In this work, we demonstrate that the recent advancements in machine learning algorithms and libraries combined with careful MDP formulation lead to learning quadruped locomotion in only 20 minutes in the real world. We evaluate our approach on several indoor and outdoor terrains that are known to be challenging for classical, model-based controllers and observe that the robot consistently learns a walking gait on all of these terrains. Finally, we evaluate our design decisions in a simulated environment.